Titelangaben
Shukla, Shivank S. ; Künneth, Christopher ; Ramprasad, Rampi:
Polymer Informatics Beyond Homopolymers.
arXiv
,
2023
DOI: https://doi.org/10.48550/arXiv.2303.12938
Abstract
Polymers are diverse and versatile materials that have met a wide range of material application demands. They come in several flavors and architectures, e.g., homopolymers, copolymers, polymer blends, and polymers with additives. Searching this enormous space for suitable materials with a specific set of property/performance targets is thus non-trivial, painstaking, and expensive. Such a search process can be made effective by the creation of rapid and accurate property predictors. In this work, we present a machine-learning framework to predict the thermal properties of homopolymers, copolymers, and polymer blends. A universal fingerprinting scheme capable of handling this entire polymer chemical class has been developed and a multi-task deep learning algorithm is trained simultaneously on a large dataset of glass transition, melting, and degradation temperatures. The developed models are accurate, fast, flexible, and scalable to other properties when suitable data become available.
Weitere Angaben
Publikationsform: | Preprint, Postprint |
---|---|
Institutionen der Universität: | Fakultäten > Fakultät für Ingenieurwissenschaften > Juniorprofessur Computational Materials Science > Juniorprofessur Computational Materials Science - Juniorprof. Dr. Christopher Künneth Fakultäten Fakultäten > Fakultät für Ingenieurwissenschaften Fakultäten > Fakultät für Ingenieurwissenschaften > Juniorprofessur Computational Materials Science |
Titel an der UBT entstanden: | Nein |
Themengebiete aus DDC: | 600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften |
Eingestellt am: | 05 Mai 2023 08:44 |
Letzte Änderung: | 23 Aug 2023 11:10 |
URI: | https://eref.uni-bayreuth.de/id/eprint/76177 |