Literatur vom gleichen Autor/der gleichen Autor*in
plus bei Google Scholar

Bibliografische Daten exportieren
 

polyBERT : A chemical language model to enable fully machine-driven ultrafast polymer informatics

Titelangaben

Künneth, Christopher ; Ramprasad, Rampi:
polyBERT : A chemical language model to enable fully machine-driven ultrafast polymer informatics.
arXiv , 2022
DOI: https://doi.org/10.48550/arXiv.2209.14803

Abstract

Polymers are a vital part of everyday life. Their chemical universe is so large that it presents unprecedented opportunities as well as significant challenges to identify suitable application-specific candidates. We present a complete end-to-end machine-driven polymer informatics pipeline that can search this space for suitable candidates at unprecedented speed and accuracy. This pipeline includes a polymer chemical fingerprinting capability called polyBERT (inspired by Natural Language Processing concepts), and a multitask learning approach that maps the polyBERT fingerprints to a host of properties. polyBERT is a chemical linguist that treats the chemical structure of polymers as a chemical language. The present approach outstrips the best presently available concepts for polymer property prediction based on handcrafted fingerprint schemes in speed by two orders of magnitude while preserving accuracy, thus making it a strong candidate for deployment in scalable architectures including cloud infrastructures.

Weitere Angaben

Publikationsform: Preprint, Postprint
Institutionen der Universität: Fakultäten > Fakultät für Ingenieurwissenschaften > Juniorprofessur Computational Materials Science > Juniorprofessur Computational Materials Science - Juniorprof. Dr. Christopher Künneth
Fakultäten
Fakultäten > Fakultät für Ingenieurwissenschaften
Fakultäten > Fakultät für Ingenieurwissenschaften > Juniorprofessur Computational Materials Science
Titel an der UBT entstanden: Nein
Themengebiete aus DDC: 600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften
Eingestellt am: 05 Mai 2023 08:43
Letzte Änderung: 05 Mai 2023 08:43
URI: https://eref.uni-bayreuth.de/id/eprint/76179