Literatur vom gleichen Autor/der gleichen Autor*in
plus bei Google Scholar

Bibliografische Daten exportieren
 

Exploring the Interplay of Process Mining and Generative AI : Research and Recommendations for CoEs

Titelangaben

Reinkemeyer, Lars ; Röglinger, Maximilian ; Kratsch, Wolfgang ; Fabri, Lukas ; Schmid, Sebastian Johannes ; Wittmann, Jakob:
Exploring the Interplay of Process Mining and Generative AI : Research and Recommendations for CoEs.
Celonis
München ; Bayreuth , 2023 . - 41 S.

Volltext

Link zum Volltext (externe URL): Volltext

Angaben zu Projekten

Projekttitel:
Offizieller Projekttitel
Projekt-ID
Projektgruppe WI Künstliche Intelligenz
Ohne Angabe
Projektgruppe WI Wertorientiertes Prozessmanagement
Ohne Angabe

Abstract

Generative AI is rapidly emerging as a revolutionary technology with the potential to transform and disrupt entire industries and our everyday lives. However, its full extent and impact on various sectors remain largely unknown, as the technology is still in its infancy and has not yet progressed to large-scale corporate use. Process Mining, on the other hand, has evolved throughout the last two decades and allows for a unique, end-to-end, data-driven perspective on business processes, which raises the question of how the interplay of both technologies can unleash unknown potentials in the future. Specifically, we have zoomed into organizational aspects to assess how Process Mining Centers of Excellence (CoEs) should prepare to accelerate the usage of Generative AI.

To answer this question, this collaborative research conducted by Celonis and Fraunhofer FIT delves deep into the dynamics of Process Mining and Generative AI. Interviews with 14 Process Mining thought leaders from industry and academia were carried out to gain a better understanding of the future that lies ahead for Centers of Excellence.

Our research reveals that Process Mining and Generative AI enter a powerful synergy. Process Mining can provide a comprehensive Process Intelligence layer which is crucial to enable Generative AI to go beyond hallucinations towards reliable results. On the other hand Generative AI will democratize the usage of Process Mining and make it available for a much wider group of business users. To fully leverage the potential of this synergy, Centers of Excellence should take action in particular on two levels:
1. On a technology-level by establishing a Process Intelligence layer including data availability / quality / privacy / security.
2. On a governance-level by establishing the right value proposition, operating model, roles & responsibilities as well as community leadership.

Weitere Angaben

Publikationsform: Working paper, Diskussionspapier
Keywords: Generative AI; Process Mining; Centers of Excellence
Institutionen der Universität: Fakultäten > Rechts- und Wirtschaftswissenschaftliche Fakultät > Fachgruppe Betriebswirtschaftslehre
Fakultäten > Rechts- und Wirtschaftswissenschaftliche Fakultät > Fachgruppe Betriebswirtschaftslehre > Lehrstuhl Betriebswirtschaftslehre XVII - Wirtschaftsinformatik und Wertorientiertes Prozessmanagement
Fakultäten > Rechts- und Wirtschaftswissenschaftliche Fakultät > Fachgruppe Betriebswirtschaftslehre > Lehrstuhl Betriebswirtschaftslehre XVII - Wirtschaftsinformatik und Wertorientiertes Prozessmanagement > Lehrstuhl Wirtschaftsinformatik und Wertorientiertes Prozessmanagement - Univ.-Prof. Dr. Maximilian Röglinger
Forschungseinrichtungen
Forschungseinrichtungen > Institute in Verbindung mit der Universität
Forschungseinrichtungen > Institute in Verbindung mit der Universität > Institutsteil Wirtschaftsinformatik des Fraunhofer FIT
Forschungseinrichtungen > Institute in Verbindung mit der Universität > FIM Forschungsinstitut für Informationsmanagement
Titel an der UBT entstanden: Nein
Themengebiete aus DDC: 000 Informatik,Informationswissenschaft, allgemeine Werke > 004 Informatik
300 Sozialwissenschaften > 330 Wirtschaft
Eingestellt am: 15 Dec 2023 09:43
Letzte Änderung: 15 Dec 2023 09:43
URI: https://eref.uni-bayreuth.de/id/eprint/88049