Literatur vom gleichen Autor/der gleichen Autor*in
plus bei Google Scholar

Bibliografische Daten exportieren
 

Explainable Artificial Intelligence (XAI) 2.0 : A Manifesto of Open Challenges and Interdisciplinary Research Directions

Titelangaben

Longo, Luca ; Brčić, Mario ; Cabitza, Federico ; Choi, Jaesik ; Confalonieri, Roberto ; Del Ser, Javier ; Guidotti, Riccardo ; Hayashi, Yoichi ; Herrera, Francisco ; Holzinger, Andreas ; Jiang, Richard ; Khosravi, Hassan ; Lecue, Freddy ; Malgieri, Gianclaudio ; Páez, Andrés ; Samek, Wojciech ; Schneider, Johannes ; Speith, Timo ; Stumpf, Simone:
Explainable Artificial Intelligence (XAI) 2.0 : A Manifesto of Open Challenges and Interdisciplinary Research Directions.
In: Information Fusion. Bd. 106 (2024) . - 102301.
ISSN 1566-2535
DOI: https://doi.org/10.1016/j.inffus.2024.102301

Volltext

Link zum Volltext (externe URL): Volltext

Angaben zu Projekten

Projektfinanzierung: Deutsche Forschungsgemeinschaft
VolkswagenStiftung
Andere

Abstract

Understanding black box models has become paramount as systems based on opaque Artificial Intelligence (AI) continue to flourish in diverse real-world applications. In response, Explainable AI (XAI) has emerged as a field of research with practical and ethical benefits across various domains. This paper highlights the advancements in XAI and its application in real-world scenarios and addresses the ongoing challenges within XAI, emphasizing the need for broader perspectives and collaborative efforts. We bring together experts from diverse fields to identify open problems, striving to synchronize research agendas and accelerate XAI in practical applications. By fostering collaborative discussion and interdisciplinary cooperation, we aim to propel XAI forward, contributing to its continued success. We aim to develop a comprehensive proposal for advancing XAI. To achieve this goal, we present a manifesto of 28 open problems categorized into nine categories. These challenges encapsulate the complexities and nuances of XAI and offer a road map for future research. For each problem, we provide promising research directions in the hope of harnessing the collective intelligence of interested stakeholders.

Weitere Angaben

Publikationsform: Artikel in einer Zeitschrift
Begutachteter Beitrag: Ja
Keywords: Explainable Artificial Intelligence; XAI; Interpretability; Manifesto; Open Challenges; Interdisciplinarity; Ethical AI; Large Language Models; Trustworthy AI; Responsible AI; Generative AI; Multi-Faceted Explanations; Concept-Based Explanations; Causality; Actionable XAI; Falsifiability
Institutionen der Universität: Fakultäten > Kulturwissenschaftliche Fakultät > Institut für Philosophie
Fakultäten > Kulturwissenschaftliche Fakultät > Institut für Philosophie > Lehrstuhl Philosophie, Informatik und Künstliche Intelligenz
Titel an der UBT entstanden: Ja
Themengebiete aus DDC: 000 Informatik,Informationswissenschaft, allgemeine Werke > 004 Informatik
100 Philosophie und Psychologie > 100 Philosophie
Eingestellt am: 29 Apr 2024 06:53
Letzte Änderung: 29 Apr 2024 06:53
URI: https://eref.uni-bayreuth.de/id/eprint/89424