Literatur vom gleichen Autor/der gleichen Autor*in
plus bei Google Scholar

Bibliografische Daten exportieren
 

Determining the Elastic Modulus of Microgel Particles by Nanoindentation

Titelangaben

Raßmann, Nadine ; Trippmacher, Steffen ; Specht, Agnes ; Theis, Katinka ; Rößler, Tamino ; Wohlrab, Sebastian ; Kellnberger, Richard ; Salehi, Sahar ; Bargel, Hendrik ; Helfricht, Nicolas ; Albrecht, Krystyna ; Scheibel, Thomas ; Groll, Jürgen ; Gekle, Stephan ; Papastavrou, Georg:
Determining the Elastic Modulus of Microgel Particles by Nanoindentation.
In: ACS Applied Nano Materials. Bd. 8 (2025) Heft 11 . - S. 5383-5398.
ISSN 2574-0970
DOI: https://doi.org/10.1021/acsanm.4c06964

Volltext

Link zum Volltext (externe URL): Volltext

Abstract

The mechanical properties of materials and cells are key factors for many processes in biofabrication. Nanoindentation using atomic force microscopy represents an important technique to quantify the Young’s elastic modulus in a locally resolved manner or for single microgel particles and cells, respectively. Here, we address the question of the best-suited indenter geometry and continuum model for contact mechanics to describe the nanoindentation of microgels. Two different microgel model systems have been synthesized using microfluidics with a very narrow size distribution of the particles: poly(acrylamide) and ene-functionalized polyoxazoline/thiol-functionalized hyaluronic acid. The respective microgel particles have been characterized by up to six different types of indenter geometries, including spherical, parallel plate, and cone. Moreover, the influence of experimental parameters, such as indentation depth and velocity, on the resulting Young’s modulus has been studied. Compared to the Hertz model, the simplified double contact model (SDC model) provided a better description of the indentation process and a narrower distribution of Young’s moduli with respect to the different indenter geometries. By numerical simulation of the indentation process, we demonstrated that the remaining variation of the Young’s moduli is attributed to adhesion. The adhesive force between a particle and the substrate led to a prestress, which is similar to that of particle deformation by the substrate as accounted for by the SDC model. This effect varied in strength with the indenter geometries and can contribute significantly to the experimentally observed variation of Young’s moduli for different indenter geometries. Importantly, these results can also be extended to the indentation of single living cells.

Weitere Angaben

Publikationsform: Artikel in einer Zeitschrift
Begutachteter Beitrag: Ja
Keywords: AFM; Hydrogel; Soft Matter; Elasticity; Nanoindentation; Adhesion; Cells
Institutionen der Universität: Fakultäten > Fakultät für Mathematik, Physik und Informatik > Physikalisches Institut > Professur Theoretische Physik VI - Simulation und Modellierung von Biofluiden
Fakultäten > Fakultät für Mathematik, Physik und Informatik > Physikalisches Institut > Professur Theoretische Physik VI - Simulation und Modellierung von Biofluiden > Professur Theoretische Physik VI - Simulation und Modellierung von Biofluiden - Univ.-Prof. Dr. Stephan Gekle
Fakultäten > Fakultät für Biologie, Chemie und Geowissenschaften > Fachgruppe Chemie > Lehrstuhl Physikalische Chemie II - Grenzflächen und Nanoanalytik
Fakultäten > Fakultät für Biologie, Chemie und Geowissenschaften > Fachgruppe Chemie > Lehrstuhl Physikalische Chemie II - Grenzflächen und Nanoanalytik > Lehrstuhl Physikalische Chemie II - Grenzflächen und Nanoanalytik - Univ.-Prof. Dr. Georg Papastavrou
Fakultäten > Fakultät für Ingenieurwissenschaften > Lehrstuhl Biomaterialien
Fakultäten > Fakultät für Ingenieurwissenschaften > Lehrstuhl Biomaterialien > Lehrstuhl Biomaterialien - Univ.-Prof. Dr. Thomas Scheibel
Profilfelder > Advanced Fields
Profilfelder > Advanced Fields > Polymer- und Kolloidforschung
Forschungseinrichtungen > Zentrale wissenschaftliche Einrichtungen > Bayreuther Zentrum für Kolloide und Grenzflächen - BZKG
Forschungseinrichtungen > Institute in Verbindung mit der Universität > Bayerisches Polymerinstitut (BPI)
Forschungseinrichtungen > Sonderforschungsbereiche, Forschergruppen > SFB/Transregio 225 Von den Grundlagen der Biofabrikation zu funktionalen Gewebemodellen
Graduierteneinrichtungen > Elitenetzwerk Bayern
Graduierteneinrichtungen > Elitenetzwerk Bayern > Macromolecular Science
Titel an der UBT entstanden: Ja
Themengebiete aus DDC: 500 Naturwissenschaften und Mathematik
500 Naturwissenschaften und Mathematik > 530 Physik
500 Naturwissenschaften und Mathematik > 540 Chemie
600 Technik, Medizin, angewandte Wissenschaften
600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften
Eingestellt am: 24 Mär 2025 08:10
Letzte Änderung: 24 Mär 2025 08:10
URI: https://eref.uni-bayreuth.de/id/eprint/92350