Titelangaben
Bauriedel, Niklas ; Albuquerque, Rodrigo Q. ; Utz, Julia ; Geis, Nico ; Ruckdäschel, Holger:
Monitoring of fused filament fabrication (FFF) : An infrared imaging and machine learning approach.
In: Journal of Polymer Science.
Bd. 62
(2024)
Heft 24
.
- S. 5633-5641.
ISSN 2642-4169
DOI: https://doi.org/10.1002/pol.20240586
Abstract
Additive manufacturing holds great promise for broader future use, but quality assurance and component monitoring present notable challenges. This study tackles monitoring Fused Filament Fabrication (FFF) via infrared imaging to forecast the mechanical traits of 3D-printed items. It highlights how temperature variations, influenced by the infill's alternating orientation, affect printed parts' mechanical properties. Utilizing Machine Learning, notably the Random Forest Regressor, this research validates the capability to accurately predict tensile strength from infrared temperature readings, offering a simple, yet effective, real-time FFF monitoring method without specialized hardware. This approach enhances the quality and dependability of 3D-printed components with IR thermal monitoring and machine learning predictions. Highlights Infrared imaging and machine learning are combined to monitor 3D printing. A cost-effective and accessible non-destructive monitoring method is proposed. Temperature variation patterns of 3D printed layers influence mechanical properties.
Weitere Angaben
| Publikationsform: | Artikel in einer Zeitschrift |
|---|---|
| Begutachteter Beitrag: | Ja |
| Keywords: | additive manufacturing; fused filament fabrication; IR imaging, machine learning; mechanical properties |
| Institutionen der Universität: | Fakultäten Fakultäten > Fakultät für Ingenieurwissenschaften Fakultäten > Fakultät für Ingenieurwissenschaften > Lehrstuhl Polymere Werkstoffe Fakultäten > Fakultät für Ingenieurwissenschaften > Lehrstuhl Polymere Werkstoffe > Lehrstuhl Polymere Werkstoffe - Univ.-Prof. Dr.-Ing. Holger Ruckdäschel Forschungseinrichtungen > Zentrale wissenschaftliche Einrichtungen > Research Center for AI in Science and Society Forschungseinrichtungen Forschungseinrichtungen > Zentrale wissenschaftliche Einrichtungen |
| Titel an der UBT entstanden: | Ja |
| Themengebiete aus DDC: | 600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften |
| Eingestellt am: | 15 Mär 2025 22:00 |
| Letzte Änderung: | 04 Nov 2025 07:27 |
| URI: | https://eref.uni-bayreuth.de/id/eprint/92861 |

bei Google Scholar