Literatur vom gleichen Autor/der gleichen Autor*in
plus bei Google Scholar

Bibliografische Daten exportieren
 

MAPbBr₃-MAPbI₃ gradient films prepared at room temperature by Powder Aerosol Deposition (PAD) for controlled ion and electron transport

Titelangaben

Xu, Tianshan ; Griesbach, Markus ; Scholz, Till ; Köhler, Anna ; Moos, Ralf:
MAPbBr₃-MAPbI₃ gradient films prepared at room temperature by Powder Aerosol Deposition (PAD) for controlled ion and electron transport.
2025
Veranstaltung: 8th International Conference on Perovskite Solar Cells and Optoelectronics - PSCO 2025 , 15.9.-18.9.2025 , Perugia, Italy.
(Veranstaltungsbeitrag: Kongress/Konferenz/Symposium/Tagung , Poster )

Angaben zu Projekten

Projektfinanzierung: Deutsche Forschungsgemeinschaft

Abstract

In halide perovskites, the diffusion of ions, driven by an electric field, concentration gradients, or light, usually causes an electric field that impacts the motion of electrons. This coupling of ion and electron transport is undesired, leading, e.g. to hysteresis in solar cell structures due to the much slower ion motion than electron motion. In this study, we report a novel approach to fabricate MAPbBr₃–MAPbI₃ gradient films at room temperature using the Powder Aerosol Deposition method (PAD) [Figure 1], a solvent-free and scalable technique. This method enables the use of mechano-chemically synthesized powders to deposit dense films at room temperature, thereby decoupling the halide synthesis from film formation. The resulting gradient films enable spatially resolved optical and electrical measurements, thus providing deeper insights into ion–electron interactions and field-dependent phenomena in complex perovskite systems. SEM images of the PAD-gradient films show that a dense and nanocrystalline film structure is achieved. EDX mapping reveals a clear vertical distribution of bromide and iodide, indicating the formation of a compositional gradient within the film. The resulting gradient structure enables spatial control over halide composition, leading to tailored band alignment and improved separation of ion and electron transport. We investigated the effects of applying electric fields both along and perpendicular to the compositional gradient, focusing on how electric field orientation influences ionic and electronic transport properties—characterized by impedance spectroscopy— as well as optical behavior, probed by fluorescence lifetime microscopy (FLIM). This work highlights the potential of Powder Aerosol Deposition for engineering perovskite interfaces and advancing the design of high-efficiency, stable perovskite solar cells.

Weitere Angaben

Publikationsform: Veranstaltungsbeitrag (Poster)
Begutachteter Beitrag: Ja
Institutionen der Universität: Fakultäten > Fakultät für Mathematik, Physik und Informatik > Physikalisches Institut > Lehrstuhl Experimentalphysik II - Optoelektronik weicher Materie
Fakultäten > Fakultät für Mathematik, Physik und Informatik > Physikalisches Institut > Lehrstuhl Experimentalphysik II - Optoelektronik weicher Materie > Lehrstuhl Experimentalphysik II - Optoelektronik weicher Materie - Univ.-Prof. Dr. Anna Köhler
Fakultäten > Fakultät für Ingenieurwissenschaften
Fakultäten > Fakultät für Ingenieurwissenschaften > Lehrstuhl Funktionsmaterialien > Lehrstuhl Funktionsmaterialien - Univ.-Prof. Dr.-Ing. Ralf Moos
Profilfelder > Advanced Fields > Neue Materialien
Forschungseinrichtungen > Zentrale wissenschaftliche Einrichtungen > Bayreuther Materialzentrum - BayMAT
Forschungseinrichtungen > Sonderforschungsbereiche, Forschergruppen > SFB 1585 - MultiTrans – Structured functional materials for multiple transport in nanoscale confinements
Titel an der UBT entstanden: Ja
Themengebiete aus DDC: 600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften
Eingestellt am: 09 Okt 2025 07:20
Letzte Änderung: 09 Okt 2025 07:53
URI: https://eref.uni-bayreuth.de/id/eprint/94850