Literatur vom gleichen Autor/der gleichen Autor*in
plus bei Google Scholar

Bibliografische Daten exportieren
 

Guess, Learn, Repeat: Intelligent Learning System with Synthetic and Counterfactual Training in a GeoGuessr-Inspired Classification Task

Titelangaben

Goutier, Marc ; Spitzer, Philipp ; Zipperling, Domenique:
Guess, Learn, Repeat: Intelligent Learning System with Synthetic and Counterfactual Training in a GeoGuessr-Inspired Classification Task.
In: Proceedings of the 59th Hawaii International Conference on System Sciences (HICSS). - Honolulu, Hawaii : University of Hawaiʻi at Mānoa , 2026 . - S. 5380-5389

Volltext

Link zum Volltext (externe URL): Volltext

Angaben zu Projekten

Projektfinanzierung: 7. Forschungsrahmenprogramm für Forschung, technologische Entwicklung und Demonstration der Europäischen Union

Abstract

Training novices by experts is often costly and time-consuming. Alternatively, learning systems offer a scalable and automated alternative. However, learning systems offer another, yet underexplored advantage, over training with experts: Analyzing novices and providing personalized training. This study explores the use of synthetically generated images to improve novice image classification skills in a GeoGuessr-inspired classification task. By leveraging a counterfactual-based approach and synthetically generated personalized training data, we aim to enhance individual learning. In a controlled experiment where participants classify Google Street View images from four different cities, we compare the impact of personalized synthetic images against randomly assigned ones. Our findings indicate that personalized training improves classification accuracy, underscoring the potential of intelligent learning. These results highlight a promising direction for integrating synthetic data into adaptive training environments in game-like settings, paving the way for effective and personalized intelligent learning systems.

Weitere Angaben

Publikationsform: Aufsatz in einem Buch
Begutachteter Beitrag: Ja
Institutionen der Universität: Fakultäten > Rechts- und Wirtschaftswissenschaftliche Fakultät > Fachgruppe Betriebswirtschaftslehre > Lehrstuhl Wirtschaftsinformatik und humanzentrische Künstliche Intelligenz > Lehrstuhl Wirtschaftsinformatik und humanzentrische Künstliche Intelligenz - Univ.-Prof. Dr.-Ing. Niklas Kühl
Forschungseinrichtungen > Zentrale wissenschaftliche Einrichtungen > Research Center for AI in Science and Society
Titel an der UBT entstanden: Ja
Themengebiete aus DDC: 000 Informatik,Informationswissenschaft, allgemeine Werke > 004 Informatik
300 Sozialwissenschaften
Eingestellt am: 26 Jan 2026 13:09
Letzte Änderung: 26 Jan 2026 13:09
URI: https://eref.uni-bayreuth.de/id/eprint/95864