Institutions of the University of Bayreuth
Chair Physical Chemistry V - Theory and Machine Learning - Univ.-Prof. Dr. Johannes Theo Margraf

One level up ...
Export as [RSS feed] RSS 1.0 [RSS2 feed] RSS 2.0
Group by: Year | Person | Item Type
Jump to: B | C | J | K | L | M | P | R | S | T | V | W
Number of items at this level: 37.

B

Bruix, Albert ; Margraf, Johannes T. ; Andersen, Mie ; Reuter, Karsten:
First-principles-based multiscale modelling of heterogeneous catalysis.
In: Nature Catalysis. Vol. 2 (2019) . - pp. 659-670.
DOI: https://doi.org/10.1038/s41929-019-0298-3

C

Chen, Ke ; Kunkel, Christian ; Cheng, Bingqing ; Reuter, Karsten ; Margraf, Johannes T.:
Physics-Inspired Machine Learning of Localized Intensive Properties.
In: Chemical Science. Vol. 14 (2023) Issue 18 . - pp. 4913-4922.
DOI: https://doi.org/10.1039/D3SC00841J

Chen, Ke ; Kunkel, Christian ; Reuter, Karsten ; Margraf, Johannes T.:
Reorganization energies of flexible organic molecules as a challenging target for machine learning enhanced virtual screening.
In: Digital Discovery. Vol. 1 (2022) Issue 2 . - pp. 147-157.
DOI: https://doi.org/10.1039/D1DD00038A

Cheng, Bingqing ; Griffiths, Ryan-Rhys ; Wengert, Simon ; Kunkel, Christian ; Stenczel, Tamas ; Zhu, Bonan ; Deringer, Volker L. ; Bernstein, Noam ; Margraf, Johannes T. ; Reuter, Karsten ; Csányi, Gábor:
Mapping Materials and Molecules.
In: Accounts of Chemical Research. Vol. 53 (2020) Issue 9 . - pp. 1981-1991.
DOI: https://doi.org/10.1021/acs.accounts.0c00403

Cadranel, Alejandro ; Margraf, Johannes T. ; Strauss, Volker ; Clark, Timothy ; Guldi, Dirk M.:
Carbon Nanodots for Charge-Transfer Processes.
In: Accounts of Chemical Research. Vol. 52 (2019) Issue 4 . - pp. 955-963.
DOI: https://doi.org/10.1021/acs.accounts.8b00673

J

Jung, Hyunwook ; Sauerland, Lena ; Stocker, Sina ; Reuter, Karsten ; Margraf, Johannes T.:
Machine-Learning Driven Global Optimization of Surface Adsorbate Geometries.
In: npj Computational Materials. Vol. 9 (2023) . - 114.
DOI: https://doi.org/10.1038/s41524-023-01065-w

Jung, Hyunwook ; Stocker, Sina ; Kunkel, Christian ; Oberhofer, Harald ; Han, Byungchan ; Reuter, Karsten ; Margraf, Johannes T.:
Size-extensive molecular machine learning with global representations.
In: ChemSystemsChem. Vol. 2 (2020) Issue 4 . - e1900052.
DOI: https://doi.org/10.1002/syst.201900052

K

Kube, Pierre ; Dong, Jinhu ; Bastardo, Nuria Sánchez ; Ruland, Holger ; Schlögl, Robert ; Margraf, Johannes T. ; Reuter, Karsten ; Trunschke, Annette:
Green synthesis of propylene oxide directly from propane.
In: Nature Communications. Vol. 13 (2022) . - 7504.
DOI: https://doi.org/10.1038/s41467-022-34967-2

Keller, Elisabeth ; Tsatsoulis, Theodoros ; Reuter, Karsten ; Margraf, Johannes T.:
Regularized Second-Order Correlation Methods for Extended Systems.
In: The Journal of Chemical Physics. Vol. 156 (2022) . - 024106.
DOI: https://doi.org/10.1063/5.0078119

Kunkel, Christian ; Margraf, Johannes T. ; Chen, Ke ; Oberhofer, Harald ; Reuter, Karsten:
Active discovery of organic semiconductors.
In: Nature Communications. Vol. 12 (2021) . - 2422.
DOI: https://doi.org/10.1038/s41467-021-22611-4

Klicpera, J. ; Giri, S. ; Margraf, Johannes T. ; Günnemann, S.:
Fast and Uncertainty-Aware Directional Message Passing for Non-Equilibrium Molecules.
2020
Event: Workshop on Machine Learning for Molecules, NeurIPS 2020 .
(Conference item: Workshop , Paper )

Kunkel, Christian ; Schober, Christoph ; Margraf, Johannes T. ; Reuter, Karsten ; Oberhofer, Harald:
Finding the right bricks for molecular legos : A data mining approach to organic semiconductor design.
In: Chemistry of Materials. Vol. 31 (2019) Issue 3 . - pp. 969-978.
DOI: https://doi.org/10.1021/acs.chemmater.8b04436

L

Li, Haobo ; Liu, Yunxia ; Chen, Ke ; Margraf, Johannes T. ; Li, Youyong ; Reuter, Karsten:
Subgroup discovery points to the prominent role of charge transfer in breaking nitrogen scaling relations at single-atom catalysts on VS₂.
In: ACS Catalysis. Vol. 11 (2021) Issue 13 . - pp. 7906-7914.
DOI: https://doi.org/10.1021/acscatal.1c01324

M

Volltext
Margraf, Johannes T.:
Neural graph distance embedding for molecular geometry generation.
In: Journal of Computational Chemistry. Vol. 45 (2024) Issue 21 . - pp. 1784-1790.
DOI: https://doi.org/10.15495/EPub_UBT_00007960

Margraf, Johannes T. ; Jung, Hyunwook ; Scheurer, Christoph ; Reuter, Karsten:
Exploring catalytic reaction networks with machine learning.
In: Nature Catalysis. Vol. 6 (2023) . - pp. 112-121.
DOI: https://doi.org/10.1038/s41929-022-00896-y

Margraf, Johannes T.:
Science-Driven Atomistic Machine Learning.
In: Angewandte Chemie International Edition. Vol. 62 (2023) Issue 26 . - e202219170.
DOI: https://doi.org/10.1002/anie.202219170

Margraf, Johannes T. ; Ulissi, Zachary W. ; Jung, Yousung ; Reuter, Karsten:
Heterogeneous Catalysis in Grammar School.
In: The Journal of Physical Chemistry C. Vol. 126 (2022) Issue 6 . - pp. 2931-2936.
DOI: https://doi.org/10.1021/acs.jpcc.1c10285

Margraf, Johannes T. ; Reuter, Karsten:
Pure non-local machine-learned density functional theory for electron correlation.
In: Nature Communications. Vol. 12 (2021) . - 344.
DOI: https://doi.org/10.1038/s41467-020-20471-y

Margraf, Johannes T. ; Hennemann, Matthias ; Clark, Timothy:
EMPIRE: A highly parallel semiempirical molecular orbital program: 3: Born-Oppenheimer molecular dynamics.
In: Journal of Molecular Modeling. Vol. 26 (2020) . - 43.
DOI: https://doi.org/10.1007/s00894-020-4293-z

Margraf, Johannes T. ; Reuter, Karsten:
Systematic Enumeration of Elementary Reaction Steps in Surface Catalysis.
In: ACS Omega. Vol. 4 (2019) Issue 2 . - pp. 3370-3379.
DOI: https://doi.org/10.1021/acsomega.8b03200

Margraf, Johannes T. ; Kunkel, Christian ; Reuter, Karsten:
Towards Density Functional Approximations from Coupled Cluster Correlation Energy Densities.
In: The Journal of Chemical Physics. Vol. 150 (2019) . - 244116.
DOI: https://doi.org/10.1063/1.5094788

Margraf, Johannes T. ; Dral, Pavlo O.:
What is semiempirical molecular orbital theory approximating?
In: Journal of Molecular Modeling. Vol. 25 (2019) . - 119.
DOI: https://doi.org/10.1007/s00894-019-4005-8

P

Panosetti, Chiara ; Engelmann, Artur ; Nemec, Lydia ; Reuter, Karsten ; Margraf, Johannes T.:
Learning to Use the Force: Fitting Repulsive Potentials in Density-Functional Tight-Binding with Gaussian Process Regression.
In: Journal of Chemical Theory and Computation. Vol. 16 (2020) Issue 4 . - pp. 2181-2191.
DOI: https://doi.org/10.1021/acs.jctc.9b00975

Peyton, Benjamin G. ; Briggs, Connor ; D'Cunha, Ruhee ; Margraf, Johannes T. ; Crawford, T. Daniel:
Machine-Learning Coupled Cluster Properties through a Density Tensor Representation.
In: The Journal of Physical Chemistry A. Vol. 124 (2020) Issue 23 . - pp. 4861-4871.
DOI: https://doi.org/10.1021/acs.jpca.0c02804

R

Ranasinghe, Duminda S. ; Margraf, Johannes T. ; Perera, Ajith ; Bartlett, Rodney J.:
Vertical Valence Ionization Potential Benchmarks from Equation-of-Motion Coupled Cluster Theory and QTP Functionals.
In: The Journal of Chemical Physics. Vol. 150 (2019) Issue 7 . - 074108.
DOI: https://doi.org/10.1063/1.5084728

S

Stocker, Sina ; Jung, Hyunwook ; Csányi, Gábor ; Goldsmith, C. Franklin ; Reuter, Karsten ; Margraf, Johannes T.:
Estimating Free Energy Barriers for Heterogeneous Catalytic Reactions with Machine Learning Potentials and Umbrella Integration.
In: Journal of Chemical Theory and Computation. Vol. 19 (2023) Issue 19 . - pp. 6796-6804.
DOI: https://doi.org/10.1021/acs.jctc.3c00541

Stocker, Sina ; Gasteiger, Johannes ; Becker, Florian ; Günnemann, Stephan ; Margraf, Johannes T.:
How Robust are Modern Graph Neural Network Potentials in Long and Hot Molecular Dynamics Simulations?
In: Machine Learning: Science and Technology. Vol. 3 (2022) Issue 4 . - 045010.
DOI: https://doi.org/10.1088/2632-2153/ac9955

Staacke, Carsten G. ; Wengert, Simon ; Kunkel, Christian ; Csányi, Gábor ; Reuter, Karsten ; Margraf, Johannes T.:
Kernel Charge Equilibration: Efficient and Accurate Prediction of Molecular Dipole Moments with a Machine-Learning Enhanced Electron Density Model.
In: Machine Learning: Science and Technology. Vol. 3 (2022) Issue 1 . - 015032.
DOI: https://doi.org/10.1088/2632-2153/ac568d

Staacke, Carsten G. ; Huss, Tabea ; Margraf, Johannes T. ; Reuter, Karsten ; Scheurer, Christoph:
Tackling structural complexity in Li₂S-P₂S₅ Solid-State Electrolytes using Machine Learning Potentials.
In: Nanomaterials. Vol. 12 (2022) Issue 17 . - 2950.
DOI: https://doi.org/10.3390/nano12172950

Staacke, Carsten G. ; Heenen, Hendrik H. ; Scheurer, Christoph ; Csányi, Gábor ; Reuter, Karsten ; Margraf, Johannes T.:
On the role of long-range electrostatics in machine-learned interatomic potentials for complex battery materials.
In: ACS Applied Energy Materials. Vol. 4 (2021) Issue 11 . - pp. 12562-12569.
DOI: https://doi.org/10.1021/acsaem.1c02363

Stuke, Annika ; Kunkel, Christian ; Golze, Dorothea ; Todorović, Milica ; Margraf, Johannes T. ; Reuter, Karsten ; Rinke, Patrick ; Oberhofer, Harald:
Atomic structures and orbital energies of 61,489 crystal-forming organic molecules.
In: Scientific Data. Vol. 7 (2020) . - 58.
DOI: https://doi.org/10.1038/s41597-020-0385-y

Stocker, Sina ; Csányi, Gábor ; Reuter, Karsten ; Margraf, Johannes T.:
Machine learning in chemical reaction space.
In: Nature Communications. Vol. 11 (2020) . - 5505.
DOI: https://doi.org/10.1038/s41467-020-19267-x

T

Türk, Hanna ; Landini, Elisabetta ; Kunkel, Christian ; Margraf, Johannes T. ; Reuter, Karsten:
Assessing Deep Generative Models in Chemical Composition Space.
In: Chemistry of Materials. Vol. 34 (2022) Issue 21 . - pp. 9455-9467.
DOI: https://doi.org/10.1021/acs.chemmater.2c01860

Timmermann, Jakob ; Lee, Yonghyuk ; Staacke, Carsten G. ; Margraf, Johannes T. ; Scheurer, Christoph ; Reuter, Karsten:
Data-Efficient Iterative Training of Gaussian Approximation Potentials: Application to Surface Structure Determination of Rutile IrO₂ and RuO₂.
In: The Journal of Chemical Physics. Vol. 55 (2021) . - 244107.
DOI: https://doi.org/10.1063/5.0071249

V

Vondrák, Martin ; Reuter, Karsten ; Margraf, Johannes T.:
q-pac: A Python Package for Machine Learned Charge Equilibration Models.
In: The Journal of Chemical Physics. Vol. 159 (2023) . - 054109.
DOI: https://doi.org/10.1063/5.0156290

W

Wengert, Simon ; Csányi, Gábor ; Reuter, Karsten ; Margraf, Johannes T.:
A Hybrid Machine Learning Approach for Structure Stability Prediction in Molecular Co-Crystal Screenings.
In: Journal of Chemical Theory and Computation. Vol. 18 (2022) Issue 7 . - pp. 4586-4593.
DOI: https://doi.org/10.1021/acs.jctc.2c00343

Wengert, Simon ; Csányi, Gábor ; Reuter, Karsten ; Margraf, Johannes T.:
Data-Efficient Machine Learning for Molecular Crystal Structure Prediction.
In: Chemical Science. Vol. 12 (2021) Issue 12 . - pp. 4536-4546.
DOI: https://doi.org/10.1039/D0SC05765G

This list was generated on Fri Dec 6 01:38:59 2024 CET.
[Top of page]
Use this URL to embed this page in external websites:
https://eref.uni-bayreuth.de/XML/divisions/122017-100.xml